
IF2211 Algorithm Strategy Paper, Semester II 2023/2024

Using Greedy Best-First Search Algorithm for

Finding the Optimal Path in Solving the Game

“Helltaker”

Zaki Yudhistira Candra - 13522031

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (stei): 13522031@std.stei.itb.ac.id

Abstract—The way we traverse the world today

The Pathfinding algorithm is one of the most prominent

algorithms discovered by computer scientists. It helps us travel or

solve problems efficiently without requiring much computing

overhead. One of the well-known pathfinding algorithms is the

Greedy Best First Search (GBFS) pathfinding algorithm. It uses

heuristic to determine which node should be processed first. This

paper will discuss the application of the GBFS algorithm in a

simple tile-based 2020 game called “Helltaker”. By analyzing the

game's levels and implementing the GBFS algorithm, this study

aims to enhance the understanding of this algorithm and provide

a concrete example of its real-world application.

Keywords—Helltaker, Video Games, Pathfinding, Algorithm,

GBFS

I. INTRODUCTION

"Helltaker," developed by Polish game developer Łukasz
Piskorz (vanripper), is a popular indie puzzle-adventure game
released in May 2020. The game quickly gained a significant
following due to its unique blend of challenging puzzles,
engaging storyline, and charming character designs. Players
navigate through a series of increasingly difficult levels to
assemble a demon ‘harem’, each level requiring strategic moves
to solve within a limited number of steps. If the player failed to
fulfil the constraints given by each level, the player would have
to restart the game.

The tile-based nature of the video game makes it an
interesting and perfect subject for studying and implementing
pathfinding algorithms. Since each level is a puzzle, solving
them efficiently often requires not just intuition, but also an
understanding of optimal pathfinding strategies. This paper aims
to explore the application of the Greedy Best-First Search
(GBFS) algorithm in finding the optimal path for solving the
puzzles in "Helltaker." The GBFS algorithm, known for its
simplicity and efficiency in certain scenarios, prioritizes paths
that appear to be leading most directly to the goal.

The Greedy Best-First Search (GBFS) algorithm is chosen
over other pathfinding algorithms such as A* and Uniform Cost
Search due to the tile-based nature of "Helltaker." In this game,
each tile or node has a fixed and uniform distance from its
neighbors, making the heuristic used in algorithms like A* for

calculating the shortest path to a node unnecessary and
inefficient. GBFS, which focuses on exploring the most
promising nodes based on a heuristic that estimates proximity to
the goal, is well-suited for the consistent structure of the game's
puzzle grids. More details will be discussed in the following
chapter.

The primary motivation behind this study is to provide a
deeper understanding of how a pathfinding algorithm can be
applied to a game design, particularly in tile-based puzzle
games. By analyzing the effectiveness of the GBFS algorithm in
"Helltaker," this paper seeks to contribute to the broader field of
game development. Additionally, it serves as a practical
example of algorithm application, bridging the gap between
textbooks concepts and real-world application.

Disclaimer: The game content discussed in this paper,
including the puzzles and character designs, belongs to the
original creator, Łukasz Piskorz (vanripper), and is not the work
of the author. The author’s work only covers the analytical and
applicational part of the paper.

II. KEY CONCEPTS

Before dicing deeper into this paper, we must first
understand the relevant key concepts of this paper. There are 3
main concepts that requires a good understanding prior to
reading this paper: Pathfinding algorithms particularly GBFS
(Greedy Best-First Search), the core mechanics of the game
“Helltaker”, and the problem identification and its step-by-step
solution. Familiarity with these concepts will provide the
necessary foundation for comprehending the discussion that
follows.

A. Path Finding Algorithm

In the realm of computer programming, there are three main
algorithms that are designed for pathfinding: The Uniform Cost
Search (UCS) Algorithm, Greedy Best-First Search Algorithm
(GBFS), and the AStar or A* algorithm which is the
combination of the two. These algorithms are the extension of
the Breadth First Search algorithm or the BFS algorithm. Used
to traverse a tree-structured node-based data.

IF2211 Algorithm Strategy Paper, Semester II 2023/2024

What differentiates these algorithms and the generic Breadth
First Search (BFS) or the Depth First Search (DFS) algorithm is
the usage of heuristics.

 Heuristics are problem-solving methods or strategies that
utilize practical and efficient approaches to finding solutions. In
the context of pathfinding algorithms, a heuristic is a function
that estimates the cost or distance from a given node to the goal
node. Heuristics guide the search process by prioritizing nodes
that are likely to lead to the goal more quickly. These estimates
are not guaranteed to be accurate, but they are designed to be
computationally inexpensive and to provide good enough
approximations to make the search process more efficient. In the
Greedy Best-First Search (GBFS) algorithm, the heuristic
function helps to determine the most promising nodes to explore
based on their estimated proximity to the goal.

The heuristic function of GBFS is denoted as:

𝑔(𝑥) = 𝑠𝑜𝑚𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

 While 𝑔(𝑥) denotes the estimated shortest path to the goal
node. The concrete implementation of the heuristic function will
be further discussed.

 An example of the implementation of 𝑔(𝑥) could be inferred
from the figure below.

Figure 2.1. the table of straight-line distance estimates to Bucharest to the
corresponding city (Source: Rinaldi Munir)

 The Greedy Best-First Search (GBFS) algorithm processes
nodes based on their estimated proximity to the goal, as
determined by the heuristic function. The order in which nodes
are processed and their prioritization in the queue depend
entirely on this heuristic. For example, in Figure 2.1, the
algorithm prioritizes processing the node with the shortest
estimated distance to Bucharest, placing the closest city at the
top of the queue.

B. Helltaker Game Mechanics

 As mentioned in the previous sections, “Helltaker” is a tile-
based puzzle game that requires the player to navigate through a
maze-like level. A player starts at a designated position and must
reach the end point or finish line within a fixed number of steps
or movements. If the player exhausts the allocated steps before
completing the level, they lose and would have to restart the
level.

Figure 2.2. Helltaker first level game overview (Source: Writer’s archive)

 Figure 2.2 illustrates the first level of the game. The yellow
circle at the top right represents the starting point, while the
orange circle indicates the endpoint or finish line. Players must
navigate their character from the yellow circled to the orange
circled tile to complete the level.

 Players navigate their character throughout the level using
the W, A, S, D or The Arrow Up, Down, Left, and Right key on
their keyboard. The W or Up moves the character north, S or
Down moves the character to the south, the A or Left to the west,
and the D or the Right to the east.

 Players could only perform their movement on the set
boundary of the level, indicated by the red floor and the void and
debris. There are other elements of the game which will be
elaborated in the next section.

 Each movement decreases the moves counter by one,
depending on the object encountered. The moves counter is
situated at the bottom-left side of the screen. The roman number
on the bottom-right side indicates the level of the game, figure
2.2 is situated in the first level of the game (I).

 There are several game objects in the “Helltaker” game.
Each object introduces a unique interaction with the player,
enhancing the game’s difficulty and puzzle elements.

Figure 2.3. the player object (Source: Writer’s archive)

 Figure 2.3 illustrates the player object; it gives the player
information about the current whereabouts of the player. The
player must move the player object to the finish line.

IF2211 Algorithm Strategy Paper, Semester II 2023/2024

Figure 2.4. Demon object (Source: Writer’s archive)

 Figure 2.3 illustrates the demon object, which serves as one
of the obstacles in the game. Players cannot move past the
demon object directly; however, they can push it in the direction
they are moving. If the demon object is pushed into a wall or any
other object, it will be destroyed. Each push or destruction of the
demon object costs the player one move, adding a layer of
strategy to the gameplay as players must decide when and how
to interact with these obstacles efficiently.

Figure 2.5. Stone object (Source: Writer’s archive)

 Figure 2.5 illustrates the Stone block object. This object
behaves similarly to the demon object, with the key difference
being that it cannot be destroyed. When a player attempts to push
a Stone block and there is another object behind it in the
direction of the push, the Stone block cannot be moved or
destroyed. Despite this, the action still costs the player one
move.

Figure 2.6. Debris (Source: Writer’s archive)

 Figure 2.6 illustrates the debris object. This object serves as
a boundary for the player and cannot be interacted with or
moved. In simpler terms, it effectively blocks the player's path.
Blocked movement from this object does not cost the player a
move.

Figure 2.7. Demon woman object (Source: Writer’s archive)

 Figure 2.5 illustrates the demon woman object. Each level
has their own unique demon woman object. This object serves
as the finish line or end point for each level. The player must
move their character to the tile next to the demon woman object
to complete the level.

Figure 2.8. Spike object (Source: Writer’s archive)

 Figure 2.8 illustrates the spike object, which is introduced in
the second level of the game. The player can pass through this
object as long as there is no stone object on top of it. When the
player enters a spike tile, their move count decreases by two
points, and exiting the tile decreases the move count by one
point. Additionally, when demon objects are pushed onto a spike
tile, they are destroyed.

Figure 2.9. Lock object (Source: Writer’s archive)

 Figure 2.9 illustrates the lock object, which is introduced in
the third level of the game. Like the debris object, the lock object
blocks the player's path to the finish line. However, it can only
be removed if the player has retrieved the key object, allowing
them to unlock and pass through it.

Figure 2.10. Key object (Source: Writer’s archive)

 Figure 2.10 illustrates the lock object, which is introduced in
the third level of the game. The player must first reach this key
object to unlock or remove the lock object that is preventing the
player from finishing the level.

C. Manhattan Distance

The Manhattan distance, also known as the city block or cab
distance, is a measure of the distance between two points in a
grid-based system where movement can only occur horizontally
or vertically, never diagonally.

The Manhattan distance between two points P1 (x1, y1) and
P2(x2, y2) is calculated as the sum absolute distance between P1

and P2.

𝑀𝑎ℎ𝑎𝑡𝑡𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|

Visually, this corresponds to the distance a taxi would have
to travel to reach one point starting from the other, moving only
along the grid lines. This distance metric is used in this context
since the player can only move horizontally or vertically,
diagonal moves are not allowed in this game. Also, this metric
is used to calculate the distance between game objects,
particularly between the player and the finish line.

IF2211 Algorithm Strategy Paper, Semester II 2023/2024

D. Heuristic Used

The heuristic employed in solving this problem is based on
the Manhattan distance between the player's current position
relative to the finish line minus the remaining moves. This
ensures that the algorithm avoids getting stuck in loops and gives
priority to positions with the fewest remaining moves. The
heuristic is expressed in the following formula.

𝑔(𝑥) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| − 𝑚𝑜𝑣𝑒𝑠_𝑙𝑒𝑓𝑡

The generated nodes will be sorted and processed based on
their heuristic values, which represent the sum of the shortest
distance from each node to the finish line and the remaining
number of moves. Nodes with higher remaining moves but
shorter distances to the finish line will be prioritized for
processing.

III. PROBLEM IDENTIFICATION

A. Game Levels

This paper primarily focuses on the implementation of the
Greedy Best-First Search (GBFS) algorithm to solve the puzzle-
based levels in the game. "Helltaker" features a total of 11 levels,
with 10 of them being puzzle-based. For simplicity of the
discussion, this paper will specifically analyze the first, second,
third, and fourth levels, showcasing the application of the GBFS
algorithm in solving these initial challenges.

Figure 3.1. First level (Source: Writer’s archive)

The initial level of "Helltaker" features a straightforward
layout designed to familiarize players with the game. It includes
only block and demon objects, with a total of 23 available
moves.

Figure 3.2. Second level (Source: Writer’s archive)

The second level of "Helltaker" features an addition of spikes
over the first level. Nevertheless, it is fundamentally the same
with a slight increase in difficulty with a total of 24 available
moves.

Figure 3.3. Third level (Source: Writer’s archive)

The third level of "Helltaker" differs from the previous ones
with the addition of the key mechanics. Players would have to
retrieve the key first to remove the lock and reach the finish line,
with a total of 32 available moves.

Figure 3.4. Fourth level (Source: Writer’s archive)

The fourth level of "Helltaker" does not add new mechanics
to the game. However, the position of stone blocks and some
spikes add a level of complexity to the stage, hence increasing
the difficulty from the third level. It has a total of 24 available
moves.

B. Instruction Set

Players will concoct a sequence of instructions that will
navigate their character to the finish line. However, the
instructions must obey the constraints which is the limited
number of moves available. A sequence is deemed valid when
the player can reach the finish line following the given sequence
without depleting the available moves midway through the
sequence.

An example of an instruction sequence as follows:

[down, left, up, left, right, down, …., up]

The instructions will be executed sequentially from its left
side all the way to its right side and will move the player
accordingly.

This paper will focus on the generation of a valid sequence
by implementing the Greedy Best First Search algorithm.

IF2211 Algorithm Strategy Paper, Semester II 2023/2024

C. Problem Modelling

The algorithm will be using a node-based system. Each note
will be represented as a state of the level. The state of the level
contains the information below.

1. The layout of the level at that current moment, upon the
movement of the player and the corresponding effects
that might occur, such as the movement of a stone block,
the destruction of a demon, etc.

2. The moves left counter

3. A flag for whether a key has been retrieved or not, only
applies to levels that contain a key

Figure 3.5. State example (Source: Writer’s archive)

For example, in figure 3.5, it resembles a state with 12 moves
left, the key has been retrieved flag, and its layout.

Those three elements are the main discriminator between
states.

When each node is processed, it will generate 4 other
possible nodes. A node containing a state if the player moved
Up, Down, Right, and Left. Each state will have its own heuristic
value and will be sorted in a priority queue, the head of the queue
has the highest priority to be processed.

The algorithm will stop if the queue is empty, or in other
words, no path is available with the given layout and constraints.

IV. IMPLEMENTATION

The algorithm will be implemented in the Java language. A

game model will be created to serve as an environment for the

GBFS algorithm implementation.

A. Game Modelling

1. Game Layout

The game will have its layout saved as an array of game
objects. Its implementation is as follows.

Figure 4.1. Layout implementation (Source: Writer’s archive)

2. Game objects

The game objects will be represented in a new game
object class as a symbol and name attribute.

Figure 4.2. Game objects implementation (Source: Writer’s archive)

Each object will have a unique symbol and name
representation. Here is the list of representations.

• The player game object will be denoted using
the ‘$’ symbol

• The demon game object will be denoted using
the ‘*’ symbol

• The stone block game object will be denoted
using the ‘@’ symbol

• The spike game object will be denoted using
the ‘^’ symbol

• The traversable floor will be denoted using the
‘.’ Symbol

• The key game object will be denoted using the
‘?’ symbol

• The lock game object will be denoted using the
‘+’ symbol

• The finish point will be denoted using the ‘!’
symbol

• The border of the game will be denoted using
the ‘#’ symbol

• The block that stacks to a spike will be denoted
using the ‘&’ symbol

Here is an example of the layout representation of the
first level.

Figure 4.3. Sample layout implementation (Source: Writer’s archive)

3. Player movement mechanics

IF2211 Algorithm Strategy Paper, Semester II 2023/2024

The program could receive a set of strings that serves as
an instruction for the player to modify its position. The
set of strings contains “up”, “down”, “left”, and “right”.
The program will move the player one tile according to
the instructions given. Here is the detailed
implementation. For the simplicity purposes, only a
small portion of the code will be included in the paper,
a link to the code repository will be provided.

Figure 4.4 Movement implementation (Source: Writer’s archive)

B. State Implementation

The state will save the layout as a string of symbols that
symbolizes the layout of the level concatenated with the moves
left counter for ease distinguishing. Here is the short
implementation of the state. The state will also save the previous
state or its parent node for backtracking purposes.

Figure 4.5. State implementation (Source: Writer’s archive)

 The player’s movements will be carried out from the states
generated by the algorithm node processing.

C. Algorithm Implementation

The algorithm will be implemented using a priority queue
for node processing. Each node will be represented as a state.
Here is the implementation of the algorithm.

The algorithm has a hash map to store the processed nodes
to prevent the processed nodes from being reprocessed. It also
has a sequence of strings which are later returned if an answer is
found.

The state will be generated by applying four different
movement instructions in each node. If a corresponding node
generation is not possible, it will throw an exception and the
node will not be generated.

Each generated node will be placed in the priority queue and
be sorted based on its heuristic value. The calculation of the
heuristic value could be inferred in the previous section.

Figure 4.6. Algorithm implementation (Source: Writer’s archive)

Figure 4.7. Node building implementation (Source: Writer’s archive)

Figure 4.8. GBFS implementation (Source: Writer’s archive)

An intriguing aspect of the algorithm's development process
involves the handling of visited states. Initially, states were
saved as objects and stored in an array of visited states.
However, this approach proved inefficient, prompting the author
to convert each state into a string representation. By representing

IF2211 Algorithm Strategy Paper, Semester II 2023/2024

states as strings, the need for storing state objects was
eliminated, leading to a more efficient implementation of the
algorithm.

Figure 4.9. GBFS heuristic implementation (Source: Writer’s archive)

V. TESTING

The testing will be carried out using a command line
interface and level files inside the main program. Each level file
contains the level size and moves given on its first line and its
layout on the remaining lines. Here is the text file example, the
7 describe the level width, 6 is the level height, and 23 is the
moves available for that level.

Figure 5.1. Level 1 txt file (Source: Writer’s archive)

The expected output of the program is a sequence of
instructions that can finish the level.

The main program will ask the user to prompt the level txt
file and execute the algorithm, producing the appropriate result.

Figure 5.2. Main program (Source: Writer’s archive)

Level 1 Testing and result

The provided txt files:

Level_1.txt

Figure 5.3.a. Level 1 txt file (Source: Writer’s archive)

The result:

Figure 5.3.b. Level 1 result (Source: Writer’s archive)

Sequence found:

Reached the finish line in 23 instructions

[down, left, left, left, left, left, down, down, left, down, left,
down, down, right, right, up, up, right, right, right, right, down,
right]

 The sequence has been tested in the game and has proven to
be valid.

Level 2 Testing and result

The provided txt files:

Level_2.txt

Figure 5.4.a. Level 2 txt file (Source: Writer’s archive)

The result:

Reached the finish line in 20 instructions

IF2211 Algorithm Strategy Paper, Semester II 2023/2024

Figure 5.4.b. Level 2 result (Source: Writer’s archive)

Sequence found:

[up, up, right, up, up, up, up, right, right, right, down, right, right,
down, down, down, down, left, left, down]

 The sequence has been tested in the game and has proven to
be valid

Level 3 Testing and result

The provided txt files:

Level_3.txt

Figure 5.5.a. Level 3 txt file (Source: Writer’s archive)

The result:

Reached the finish line in 27 instructions

Figure 5.5.b. Level 3 result (Source: Writer’s archive)

Sequence found:

[left, left, left, left, left, down, down, down, down, left, left, up,
down, right, right, right, right, right, right, right, right, up, up, up,
up, up, up]

 The sequence has been tested in the game and has proven to
be valid.

Level 4 Testing and result

The provided txt files:

Level_4.txt

Figure 5.6.a. Level 4 txt file (Source: Writer’s archive)

The result:

Reached the finish line in 23 instructions

Figure 5.6.b. Level 4 result (Source: Writer’s archive)

Sequence found:

[down, down, down, right, down, down, right, up, up, right,
down, down, right, up, up, right, right, down, down, right, right,
up, up]

 The sequence has been tested in the game and has proven to
be valid.

Note: the algorithm has found a path that does not require the
retrieval of the key, resulting in an achievement given from the
game.

 The sequence that requires the retrieval of the key would be:

[down, down, down, right, down, down, right, right, right, up,
left, left, up, up, right, down, down, right, right, right, down]

With 20 instructions

VI. CONCLUSION

In this paper, we explored the application of the Greedy
Best-First Search (GBFS) algorithm in solving the puzzle-based
levels of the game "Helltaker." By focusing on the first four
levels, we demonstrated how the GBFS algorithm, guided by a
heuristic function, effectively navigates the tile-based game
environment to find optimal paths.

The implementation process revealed several important
considerations, such as the inefficiencies of storing state objects
and the benefits of using string representations for visited states.
These insights not only improved the algorithm's performance
but also highlighted practical challenges and solutions in
applying pathfinding algorithms to real-world scenarios.

IF2211 Algorithm Strategy Paper, Semester II 2023/2024

 In conclusion, this paper contributes to a deeper
understanding of the GBFS algorithm and its practical
applications, offering a concrete example of how theoretical
concepts in computer science can be applied to enhance
gameplay and solve puzzles in modern video games.

VIDEO LINK AT YOUTUBE

https://youtu.be/He5C3yrYVbA

REPOSITORY

https://github.com/ZakiYudhistira/Helltaker-Solver

ACKNOWLEDGMENT

The completion of this paper would not have been possible
without the support of all IF2211 lecturers, especially Dr. Ir.
Rinaldi Munir, M.T., who taught the K01 section of the
algorithm strategy course. The author has gained a substantial
amount of knowledge throughout the development of this paper.
Special thanks are also extended for providing extensive
learning resources for the students.

REFERENCES

[1] https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Route-
Planning-Bagian1-2021.pdf

[2] https://en.wikipedia.org/wiki/Helltaker

[3] Sierra, K., & Bates, B. (2003). Head First Java. O'Reilly.

STATEMENT

Hereby, I declare that this paper I have written is my own work,

not a reproduction or translation of someone else's paper, and

not plagiarized.

Bandung, 12 Juni 2024

Signed

Zaki Yudhistira Candra 13522031

https://youtu.be/He5C3yrYVbA
https://github.com/ZakiYudhistira/Helltaker-Solver

